优胜从选择开始,我们是您最好的选择!—— 第一学术网(北京鼎新文化传媒有限公司)
010 - 86226008
483825188@qq.com
您的位置:网站首页 > 科技论文 > 正文

添加Sn元素对Zr-16Nb-xTi (x=4 wt%,16 wt%)合金弹性模量及磁化率的影响

作者:薛人豪 王东 田悦言 邓子旋 刘立斌 章立钢来源:《中南大学学报(英文版)》日期:2023-06-07人气:1005

1 Introduction

Due to their superior mechanical properties, biomedical alloys, such as Ti-based alloys, are widely used in clinical medicine [1-6]. Biomaterials have been subjected to increasing performance demands in recent years, due to the constant improvement of medical standards and the rapid development of medical equipment. The most important requirements for innovative biomaterials are low elastic modulus and magnetic susceptibility, as well as biocompatibility [7]. Although several Ti-based alloys meet mechanical requirements, their high magnetic susceptibility and poor biocompatibility limit their application areas in clinical medicine [8-9]. As a result, in recent years, greater attention has been paid to Zr alloys, which have lower magnetic susceptibility and elastic modulus, as well as good biocompatibility, compared to Ti alloys [10-14]. However, there are only a few reports of Zr-based alloys that meet all of the above requirements. A major problem is that α″ martensite phase, which can significantly improve alloy performance, is rarely formed in Zr-Nb and Zr-Nb-Ti systems. OKABE et al [15] first reported α″ martensite phase in the Zr-Nb system with appropriate Sn addition. Furthermore, the addition of Sn has been reported to reduce the magnetic susceptibility of Zr-Nb alloy [13]. Recently, XUE et al [16] presented Zr-16Nb-xTi alloys with outstanding mechanical and magnetic properties, particularly in Zr-16Nb-4Ti and Zr-16Nb-16Ti, and the β+α′ phase constitution is well aligned with the key requirements. Inspired by their research, we explored the possibility of obtaining lower elastic modulus and magnetism by adding appropriate Sn, created Zr-16Nb-xTi-ySn (x=4 wt%, 16 wt%,  y=4 wt%, 6 wt%) alloys, measured their mechanical and magnetic properties, observed their microstructures, and established a correlation between Sn addition and elastic modulus, mechanical strength, as well as magnetic susceptibility of these alloys.

期刊知识

客服一号: 卜编辑

客服二号: 林编辑

地址:北京市通州区北京鼎新文化传媒有限公司 ICP备案号:京ICP备14054149号-4

【免责声明】:第一学术网 所提供的信息资源如有侵权、违规,请及时告知。

版权所有:第一学术网(北京鼎新文化传媒有限公司)

扫码联系客服
扫码联系客服

核心期刊为何难发?

论文发表总嫌贵?

职院单位发核心?

扫码联系客服

论文发表不再有疑惑

论文写作全系列课程

扫码了解更多

轻松写核心期刊论文