合成高分子是现代社会不可或缺的材料基础,为社会作出了卓越的贡献. 然而遗憾的是,当前大宗高分子树脂的合成与应用存在着严重的不可持续性,不仅过度依赖石化资源,而且难以降解回收,从而造成了严峻的资源浪费、白色污染等诸多环境问题. 发展新型的可持续性高分子材料因而具有重要的科学意义和迫切的现实意义,是当前高分子学科的热点前沿领域[1]. 理想的可持续性高分子是基于大宗可再生原料或工农业废弃物,通过合理的化学化工手段以低能耗和绿色环保的方式聚合加工成为商业化产品,且在其生命终期时应能快速降解成为单体,或转化为高附加值化学品或环境无害小分子等[2]. 但是目前报道的可持续性高分子普遍存在着单体价格昂贵,难以大量工业生产,以及其材料性能无法与大宗高分子树脂相抗衡等问题.
“非张力”五元环内酯广泛存在于自然界的天然品中,亦可由淀粉或木质纤维素等生物质为原料大规模生产,有潜力作为一类价廉量大的可再生单体,应用于可持续性高分子材料的合成. 然而,“非张力”五元环内酯的开环聚合一直以来都是高分子化学领域的学术难题,以往的教科书和文献通常称它们为“不能聚合”的单体[4]. 这是由于它们结构的热力学稳定性导致了其开环聚合缺乏足够的驱动力,且极易达到聚合-解聚平衡,聚合上限温度低,无法持续与高产率地转化单体. 作为“非张力”五元环内酯家族中结构最简单的成员,γ-丁内酯只在极端条件下才能发生开环聚合(2.00×109 Pa,160 ℃或≤-40 ℃,1.01×105 Pa),这严重阻碍了工业生产的适用性[3]. 近日,中国科学院上海有机所洪缪课题组通过巧妙的单体设计,一步硫化反应将硫原子引入五元环内酯中,以接近定量的收率合成新型五元环硫羰代内酯(γ-thionobutyrolactone,TnBL). 有趣的是这类单体在开环过程中发生专一性的烷氧键断裂和硫/氧异构化的协同反应,而不是常见的酰氧键断裂,从而实现了一种不可逆开环聚合(IROP)的新策略(图1)[4]. 该策略突破了传统开环聚合(ROP)中所受到聚合-解聚热力学平衡与聚合上限温度(Tc)的限制,促使这类非张力环单体在温和条件下即可发生高效聚合,为工业化合成基于五元环内酯的可持续性高分子提供了可能.
Fig. 1 Synthesis and properties of PTBL.