苯并噁唑脲/MTBD催化L-丙交酯和δ-戊内酯开环共聚合
聚乳酸(PLA)被认为是最有前途的生物塑料之一,因为它的原料可以通过发酵从可再生资源(如淀粉材料和糖)中获得[
Tsutsumi等[
文献报道的催化剂[
南京工业大学郭凯等[
本课题组[
1 实验部分
1.1 主要原料
3,5-双(三氟甲基)苯基异氰酸酯(98%)、6-氨基苯并噁唑(97%)、7-甲基-1,5,7-三氮杂二环[4.4.0]癸-5-烯(MTBD,98%)、氢化钙(93%)、球状4Å分子筛(3~5 mm)、氘代氯仿、氘代二甲基亚砜等试剂购于百灵威科技有限公司,未经进一步纯化. δ-戊内酯(99%)和苄醇(99%)购于阿拉丁试剂有限公司,在室温下用CaH2干燥24 h,减压蒸馏后使用;L-丙交酯购买于北京元生融科技有限公司,在乙酸乙酯中重结晶3次后使用;二氯甲烷(DCM)、四氢呋喃、甲苯、甲醇等溶剂购买于国药集团化学试剂有限公司,经溶剂纯化系统处理后使用. 苯并噁唑脲催化剂(NO)根据文献方法[
Fig. 1 Structure of benzoxazolyl urea (NO).
1.2 聚合实验
1.2.1 L-丙交酯的开环聚合
典型的反应步骤如下(
Table 1 ROP of L-LA catalyzed by NO/MTBD under different conditions a.
Entry | [M]0/[I]0/[NO] | Solvent | Time (min) | Conv. b (%) | Mn,GPC d (kg/mol) | Mn,th c (kg/mol) | Ð d |
---|---|---|---|---|---|---|---|
1 | 50/1/0.25 | THF | 15 | 100 | 12.1 | 7.32 | 1.07 |
2 | 50/1/0.25 | Toluene | 15 | 51 | ‒ | ‒ | ‒ |
3 | 50/1/0.25 | DCM | 15 | 100 | 7.88 | 7.32 | 1.06 |
4 e | 50/1/0.25 | THF | 15 | 97 | 11.2 | 7.10 | 1.06 |
5 | 100/1/0.5 | THF | 25 | 92 | 16.7 | 13.4 | 1.06 |
6 | 200/1/1 | THF | 60 | 100 | 17.0 | 28.9 | 1.18 |
7 | 300/1/1.5 | THF | 90 | 100 | 21.0 | 43.3 | 1.23 |
8 | 400/1/2 | THF | 90 | 92 | 30.7 | 53.1 | 1.14 |
9 f | 50/1/0.25 | ‒ | 15 | 83 | 7.95 | 6.09 | 1.21 |
10 f | 100/1/0.5 | ‒ | 25 | 81 | 14.3 | 11.8 | 1.23 |
a Reaction conditions: solvent, 3.5 mL; L-LA, 1 g (6.9 mmol); catalyst loading, 0.5 mol% of monomer; NO/MTBD = 1/1 (molar ratio); initiator, BnOH; reaction temperature, 25 ℃; quenched with benzoic acid dissolved in dichloromethane; b Calculated by 1H-NMR spectroscopy; c Mn,th = [M]0/[I]0 × Conv.% × 144.13 + 108.14; d Measured by GPC in THF at 35 ℃, calibrated with polystyrene standards; e Monomer: meso-LA, other conditions remained unchanged; f Reaction temperature: 100 ℃.
1.2.2 δ-戊内酯与L-丙交酯的开环共聚合
无规共聚物PLLA-co-PVL的合成,其典型的反应步骤如下(
Table 2 Copolymerization of δ-VL and L-LA catalyzed by NO/MTBD. a
Entry | [LA]0/[VL]0 b | Conv. c (%) | Mn d (kg/mol) | Ð d | fVL c | lVL c | lLA c | R |
---|---|---|---|---|---|---|---|---|
1 | 0/100 | 99 | 13.1 | 1.07 | 1 | ‒ | ‒ | ‒ |
2 | 20/80 | 97 | 16.9 | 1.48 | 0.79 | 2.01 | 0.45 | 0.50 |
3 | 40/60 | 97 | 16.0 | 1.55 | 0.59 | 2.03 | 1.25 | 0.49 |
4 | 50/50 | 97 | 15.9 | 1.56 | 0.50 | 2.04 | 1.79 | 0.49 |
5 | 60/40 | 96 | 16.5 | 1.52 | 0.42 | 2.05 | 2.74 | 0.49 |
6 | 80/20 | 99 | 18.6 | 1.61 | 0.25 | 2.07 | 7.41 | 0.48 |
7 | 100/0 | 100 | 11.6 | 1.22 | 0 | ‒ | ‒ | ‒ |
8 e | 50/50 | 99 | 14.9 | 1.51 | 0.49 | 2.00 | 3.19 | 0.01 |
9 f | 50/50 | 99 | 14.9 | 1.28 | 0.45 | 2.03 | 2.61 | 0.05 |
a Reaction condition: solution, 3.85 mL THF; total amount of two monomers, 15.4 mmol; δ-VL and L-LA were premixed for ROP; catalyst loading, 2.5 mol% of monomer; NO/MTBD = 1/1; BnOH was the initiator, NO/BnOH = 1/0.4; reaction temperature, 25 ℃; reaction time, 1.5 h; quenched with benzoic acid dissolved in dichloromethane; b Feeding ratio of δ-VL to L-LA; c Calculated by 1H-NMR spectroscopy; d Measured by GPC at 35 ℃, calibrated with polystyrene standards; e “One-pot method” block copolymerization: L-LA was added for ROP first, and after 1.5 h, δ-VL was added and reacted for another 1.5 h; f “Chain extension method” block copolymerization: δ-VL ([δ-VL]/[NO]=20/1) was added with PLLA (entry 1 in Table 1) as a macromolecular initiator.